作者:Dutt, Manjul, Mou, Zhonglin, Zhang, Xudong, Tanwir, Sameena E. and Grosser, Jude W.
摘要:Background Development of precise genome editing strategies is a prerequisite for producing edited plants that can aid in the study of gene function and help understand the genetic traits in a cultivar. Citrus embryogenic cell cultures can be used to rapidly produce a large population of genome edited transformed citrus lines. The ability to introduce specific mutations in the genome of these cells using two constructs (pC-PDS1 and pC-PDS2) was evaluated in this study. Results Citrus sinensis 'EV2' embryogenic cell cultures are amenable to Agrobacterium-mediated CRISPR/Cas9-based genome editing. Guide RNAs (gRNAs) targeting two locations in the phytoene desaturase (PDS) gene were either driven by the Arabidopsis U6-26 promoter (pC-PDS1) or assembled as a Csy4 array under the control of the CmYLCV promoter (pC-PDS2). All transgenic embryos were completely albino and no variegated phenotype was observed. We evaluated 12 lines from each construct in this study and the majority contain either insertion (1-2 bp), substitution (1 bp), or deletion (1-3 bp) mutations that occurred close to the protospacer adjacent motif. Conclusions Both the pC-PDS1 and pC-PDS2 could successfully edit the citrus embryogenic cell cultures. However, the editing efficiency was dependent on the gRNA, confirming that the selection of a proper gRNA is essential for successful genome editing using the CRISPR/Cas9 technique. Also, utilization of embryogenic cell cultures offers another option for successful genome editing in citrus.
文献注录:Dutt, Manjul, Mou, Zhonglin, Zhang, Xudong, Tanwir, Sameena E. and Grosser, Jude W.. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures [J]. . 2020, 1.
报/刊名:《》,发表于2020 / 第 1 期。
文献类型: [J]
页码:第 页 / 共 页