标题:Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence

作者:Zhang, Yin; Zhang, Yingzi; Sun, Quan; Lu, Suwen; Chai, Lijun; Ye, Junli; Deng, Xiuxin

摘要:Senescence is a gradual physiological process involving the integration of numerous internal and environmental signals. Abscisic acid (ABA) is a well-known inducer of senescence. However, the regulatory mechanisms underlying ABA-mediated senescence remain largely unknown. Here, we report that the citrus homeodomain leucine zipper I (HD-ZIP I) transcription factor CsHB5 functions as a regulator of ABA-triggered senescence. CsHB5 acts as a nucleus-localized transcriptional activator, the expression of which appeared to be closely associated with citrus senescence. Overexpression of CsHB5 in citrus calli upregulated the expression of ABA- and reactive oxygen species (ROS)-related genes, and significantly increased the content of ABA and hydrogen peroxide (H2O2), whereas silencing CsHB5 in citrus calli downregulated the expression of ABA-related genes. Additionally, heterogenous overexpression of CsHB5 in Solanum lycopersicum (tomato) and Arabidopsis thaliana (Arabidopsis) leads to early leaf yellowing under dark-induced senescence conditions. Meanwhile, the levels of ABA and H2O2 in transgenic tomatoes increased significantly and the lycopene content decreased. Transcriptome analysis of CsHB5-overexpressing citrus calli and tomato showed that CsHB5 was involved in multiple senescence-associated processes, including chlorophyll degradation, nutrient compound biosynthesis and transport, as well as ABA and ROS signal transduction. The results of yeast one-hybrid assays, electrophoretic mobility shift assays and dual luciferase assays indicated that CsHB5 directly binds to the promoters of ABA biosynthetic genes, including beta-carotene hydroxylase 1 (BCH1) and 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), thereby activating their transcription. Our findings revealed that CsHB5 participates in senescence, at least partly, by directly controlling ABA accumulation. Our work provides insight into the regulatory mechanisms underlying ABA-mediated senescence.

文献注录:Zhang, Yin; Zhang, Yingzi; Sun, Quan; Lu, Suwen; Chai, Lijun; Ye, Junli; Deng, Xiuxin. Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence [J]. . 2021.

报/刊名:》,发表于2021

文献类型: [J]

页码: 页 / 共

Copyright© 2012 中国农业科学院柑桔研究所 All rights reserved.   网站备案号:渝ICP备05000267号   栏目访问量:次.     联系站长